Prediction of 3D RNA Structures from Sequence Using Energy Landscapes of RNA Dimers: Application to RNA Tetraloops

01 August 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Access to the three-dimensional structure of RNA enables an ability to gain a more profound understanding of its biological mechanisms, as well as the ability to design RNA-targeting drugs, which can take advantage of the unique chemical environment imposed by a folded RNA structure. Due to the dynamic and structurally complex properties of RNA, both experimental and traditional computational methods have difficulty in determining RNA’s 3D structure. Herein, we introduce TAPERSS (Theoretical Analyses, Prediction, and Evaluation of RNA Structures from Sequence), a physics-based fragment assembly method for predicting 3D RNA structures from sequence. Using a fragment library created using discrete path sampling calculations of RNA dinucleoside monophosphates, TAPERSS can sample the physics-based energy landscapes of any RNA sequence with relatively low computational complexity. We have benchmarked TAPERSS on 21 RNA tetraloops, using a combinatorial algorithm as a proof-of-concept. We show that TAPERSS was successfully able to predict the apo-state structures of all 21 RNA hairpins, with 16 of those structures also having low predicted energies as well. We demonstrate that TAPERSS performs most accurately on GNRA-like tetraloops with mostly stacked loop-nucleotides, while having limited success with more dynamic UNCG and CUYG tetraloops, most likely due to the influence of the RNA force field used to create the fragment library. Moreover, we show that TAPERSS can successfully predict the majority of the experimental non-apo states, highlighting its potential in anticipating biologically significant yet unobserved states. This holds great promise for future applications in drug design and related studies. With discussed improvements and implementation of more efficient sampling algorithms, we believe TAPERSS may serve as a useful tool for a physics-based conformational sampling of large RNA structures.

Keywords

RNA Folding
Fragment Assembly
RNA force field
Discrete Path Sampling
RNA dinucleotide monophosphate
TAPERSS
Theoretical Analyses
Prediction
and Evaluation of RNA Structures from Sequence

Supplementary materials

Title
Description
Actions
Title
Theoretical Analyses, Prediction, and Evaluation of RNA Structures from Sequence (TAPERSS)
Description
We introduce TAPERSS (Theoretical Analyses, Prediction, and Evaluation of RNA Structures from Sequence), a physics-based fragment assembly method for predicting 3D RNA structures from sequence. Using a fragment library created using discrete path sampling calculations of RNA dinucleoside monophosphates, TAPERSS can sample the physics-based energy landscapes of any RNA sequence with relatively low computational complexity. We have benchmarked TAPERSS on 21 RNA tetraloops, using a combinatorial algorithm as a proof-of-concept. With discussed improvements and implementation of more efficient sampling algorithms, we believe TAPERSS may serve as a useful tool for a physics-based conformational sampling of large RNA structures.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.