Room-Temperature Multiple Phosphorescence from Functionalized Corannulenes: Temperature Sensing and Afterglow Organic Light-Emitting Diode

06 July 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Corannulene-derived materials have been extensively explored in energy storage and solar cells, but, however, are rarely documented as emitters in light-emitting sensors and organic light-emitting diodes (OLEDs), due to low exciton utilization. Here, we report a family of multi-donor and acceptor (multi-D-A) motifs, TCzPhCor, TDMACPhCor, and TPXZPhCor, using corannulene as the acceptor and carbazole (Cz), 9,10-dihydro-9,10-dimethylacridine (DMAC), and phenoxazine (PXZ) as the donor, respectively. By decorating corannulene with different donors, multiple phosphorescence is realized. Theoretical and photophysical investigations reveal that TCzPhCor shows room-temperature phosphorescence (RTP) from the lowest-lying T1; however, for TDMACPhCor, dual RTP originating from a higher-lying T1 (T1H) and a lower-lying T1 (T1L) can be observed, while for TPXZPhCor, T1H-dominated RTP occurs resulting from a stabilized high-energy T1 geometry. Benefiting from the high-temperature sensitivity of TPXZPhCor, high color-resolution temperature sensing is achieved. Besides, due to degenerate S1 and T1H states of TPXZPhCor, the first corannulene-based solution-processed afterglow organic light-emitting diodes (OLEDs) is investigated. The afterglow OLED with TPXZPhCor shows a maximum external quantum efficiency (EQEmax) and a luminance (Lmax) of 3.3% and 5167 cd m-2, respectively, which is one of the most efficient afterglow RTP OLEDs reported to date.

Keywords

corannulene
afterglow
room temperature phosphorescence
temperature sensor

Supplementary materials

Title
Description
Actions
Title
ESI
Description
Electronic Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.