Amphiphilic Molecules Exhibiting Zwitterionic Excited-State Intramolecular Proton Transfer and Near-Infrared Emission for the Detection of Amyloid β Aggregates in Alzheimer’s Disease

29 June 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Chromophores with zwitterionic excited-state intramolecular proton transfer (ESIPT) have been shown to have larger Stock shifts and red-shifted emission wavelengths compared to the conventional π-delocalized ESIPT molecules. However, there is still a dearth of design strategies to expand the current library of zwitterionic ESIPT compounds. Herein, we report a novel zwitterionic excited-state intramolecular proton transfer system enabled by addition of triazamacrocycle (TACN) fragments on a dicyanomethylene-4H-pyran (DCM) scaffold. The solvent-dependent steady-state photophysical studies and pKa measurements strongly support that the ESIPT process is more efficient with two TACN groups attached to the DCM scaffold and not affected by polar protic solvents. Impressively, compound DCM-OH-2-DT emits with a near-infrared (NIR) emission wavelength at 740 nm along with an uncommonly large Stokes shift of ~ 280 nm. Moreover, DCM-OH-2-DT shows high affinity towards soluble amyloid β (Aβ) oligomers in vitro and in 5xFAD mouse brain sections, and we have successfully applied DCM-OH-2-DT for the NIR fluorescence in vivo imaging of Aβ aggregates and demonstrated its potential use as an early diagnostic agent for AD. Overall, this study can provide a general molecular design strategy for developing new zwitterionic ESIPT compounds with NIR emission for further in vivo imaging applications.

Keywords

Zwitterionic excited-state intramolecular proton transfer (ESIPT)
Alzheimer's Disease
amyloid-β (Aβ) oligomers
early diagnosis
near-infrared (NIR) fluorescence imaging

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.