Comparing the sensitivity of a low- and a high-resolution mass spectrometry approach for xenobiotic trace analysis: An exposome-type case study

22 June 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The chemical exposome consists of environmental exposures experienced throughout a lifetime but to date analytical approaches to investigate the plethora of low-abundance chemicals remain very limited. Liquid chromatography high-resolution mass spectrometry (HRMS) is commonly applied in untargeted exposome-wide analyses of xenobiotics in biological samples; however, human biomonitoring approaches usually utilize targeted low-resolution triple quadrupole (QQQ) mass spectrometry tailored to a small number of chemicals. HRMS can identify novel contaminants over a broad mass range but the detection of molecules from low-level exposure amidst a background of highly-abundant endogenous molecules has proven to be difficult. In this study, a triple quadrupole (QQQ) and a high-resolution mass spectrometer (HRMS) with identical chromatography were utilized to determine the limits of quantitation (LOQ) of >100 xenobiotics and estrogenic hormones in pure solvent and human urine. Both instruments are currently used in exposure assessment studies and were operated in their most frequently used acquisition mode (full scan for HRMS and multiple reaction monitoring for QQQ) to mimic typical applications. For HRMS analyses, the median LOQ was 0.9 and 1.2 ng/mL in solvent and urine, respectively and for low-resolution QQQ measurements, the median LOQ was 0.1 and 0.2 ng/mL in solvent and urine, respectively. To evaluate the calculated LOQs in complex biological samples, spot urine samples from 24 Nigerian females were measured. The higher LOQ values for HRMS resulted in less quantified low-abundance analytes and decreased the number of compounds detected below the LOQ. Even at chronic low-dose exposure, such compounds might be relevant for human health because of high individual toxicity or potential mixture effects. Nevertheless, HRMS enabled the additional screening for exposure to unexpected/unknown analytes, including emerging compounds and biotransformation products. Therefore, a synergy between high- and low-resolution mass spectrometry may currently be the best option to elucidate and quantify xenobiotics in exposome-wide association studies (ExWAS).

Keywords

Exposomics
LOQ
sensitivity
xenobiotics
human biomonitoring

Supplementary materials

Title
Description
Actions
Title
Supplementary Material A
Description
Additional tables (Table S1-Table S9) and figures (Figure S1-S2)
Actions
Title
Supplementary Material B
Description
Additional tables (Table S9-Table S10)
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.