Prospects of Single-Cell NMR Spectroscopy with Quantum Sensors

13 June 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Single-cell analysis can unravel functional heterogeneity within cell populations otherwise obscured by ensemble measurements. However, non-invasive techniques that probe chemical entities and their dynamics are still lacking. This challenge could be overcome by novel sensors based on nitrogen-vacancy (NV) centers in diamond, which enable nuclear magnetic resonance (NMR) spectroscopy on unprecedented sample volumes. In this perspective, we briefly introduce NV-based quantum sensing and review the progress made in microscale NV-NMR spectroscopy. Lastly, we discuss approaches to enhance the sensitivity of NV ensemble magnetometers to detect biologically relevant concentrations and provide a roadmap towards their application in single-cell analysis.


Nuclear Magnetic Resonance
Nitrogen-Vacancy Center
Single-Cell Analysis
Quantum Sensing


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.