Theoretical Insights into Designing Single-Atom Catalysts on Defective MXenes for Efficient Reduction of Nitrate into Ammonia

13 June 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Electrocatalytic nitrate reduction reaction (NO3RR) is a promising approach for converting nitrate into environmentally benign or even value-added products such as ammonia (NH3) using renewable electricity. However, the poor understanding of the catalytic mechanism on metal-based surface catalysts hinders the development of high-performance NO3RR catalysts. In this study, we have systematically explored the NO3RR mechanism of single-atom catalysts (SACs) by constructing single transition metal atoms supported on MXene with oxygen vacancies (Ov-MXene) using density functional theory (DFT) calculations. Our results indicate that Ag/Ov-MXene (for precious metal) and Cu/Ov-MXene (for non-precious metal) are highly efficient SACs for NO3RR toward NH3, with low limiting potentials of −0.24 and −0.34 V, respectively. Furthermore, these catalysts show excellent selectivity towards ammonia due to the high energy barriers associated to the formation of byproducts such as NO2, NO, N2O, and N2 on Ag/Ov-MXene and Cu/Ov-MXene, effectively suppressing the competitive hydrogen evolution reaction (HER). Our findings not only offer new strategies for promoting NH3 production by MXene-based SACs electrocatalysts under ambient conditions but also provide insights for the development of next-generation NO3RR electrocatalysts.

Keywords

Nitrate Reduction Reaction
Oxygen Vacancy MXene
Single-Atom Catalysts
DFT Calculations
Sustainable Electrochemical Upcycling

Supplementary materials

Title
Description
Actions
Title
SI for Calc SAC Ov-MXene NO3RR paper
Description
SI for Calc SAC Ov-MXene NO3RR paper
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.