In situ Visualization of Cluster-mediated Oxidation Dynamics and Kinetics on Cu(111)

08 June 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Using Scanning Tunneling Microscopy (STM) and Ambient Pressure X-ray Photoelectron Spectroscopy (APXPS), we investigated the structural evolution of Cu(111) interacting with oxygen in situ. O2 preferentially dissociates at Cu surface steps and oxidizes Cu, yielding “5-7”-Cu2O overlayers on surface steps, embedding oxides in adjacent terraces, and placing oxides on top of terraces. In response to continuous O2 exposure at 373 K, newly formed “5-7”-Cu2O films undergo successive transformations to “44”-Cu2O and “29”-Cu2O phases. Cuprous Cu-O overlayers are stable, even under high pressures (~1.6 mbar), at 473 K. First-principles Density Functional Theory (DFT) simulations substantiate experimental observations, resolving the energetics and structures of adsorption states and oxidation mechanisms at atomic scales. Specifically, the atomic dynamics responsible for overlayer growth from steps, selective oxidation of particular surface steps, and oxidation regime switching with overlayer coverage were all elucidated. Our combined STM, APXPS, and DFT studies extensively evaluate how Cu oxide overlayers dynamically form over various structural and reaction conditions.


surface oxide transformation
in situ STM

Supplementary materials

supporting information
SI for the main draft


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.