A Near-Infrared Ratiometric Fluorescent Probe for Detecting Endogenous Cu2+ in the Brain

07 June 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Copper participates in a range of critical functions in the nervous system in the human brain. Disturbances in brain copper content is strongly associated with neurological disease. For example, changes in the level and distribution of copper are reported in neuroblastoma, Alzheimer's disease and Lewy body disorders. There is a need for more sensitive techniques to measure intracellular copper levels to have a better understanding of the role of copper homeostasis in neuronal disorders. Here we report a reaction-based near-infrared (NIR) ratiometric fluorescent probe CyCu1 for imaging Cu2+ in biological samples. High stability and selectivity of CyCu1 enabled the probe to be deployed as a sensor in a range of systems, including SH-SY5Y and neuroblastoma cells. Furthermore, it can be used in plant cells, reporting copper added to Arabidopsis roots. We also used CyCu1 to explore Cu2+ levels and distribution in postmortem brain tissues from patients with the Lewy body disorder, Dementia with Lewy bodies (DLB). We found significant decreases in Cu2+ content in the nuclei, cytoplasm, neurons and extraneuronal space in the degenerating substantia nigra (SN) in DLB compared with healthy age-matched control tissues. These findings enhance our understanding of Cu2+ dysregulation in Lewy body disorders. Our probe also shows promise as a photoacoustic imaging agent, with potential for applications in bimodal imaging.

Keywords

Fluorescent probe
Copper
neurological disease
Near infrared
Ratiometric

Supplementary materials

Title
Description
Actions
Title
Supplementary Materials
Description
Experimental details and supplementary figures.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.