Insights into substrate recognition by the unusual nitrating enzyme RufO

02 June 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Nitration reactions are crucial for many industrial syntheses; however, current protocols lack site-specificity and employ hazardous chemicals. The non-canonical cytochrome P450 enzymes RufO and TxtE catalyze the only known direct aromatic nitration reactions in nature, making them attractive model systems for the development of analogous biocatalytic and/or biomimetic reactions that proceed under mild conditions. While the associated mechanism has been well characterized in TxtE, much less is known about RufO. Herein, we present the first structure of RufO alongside a series of computational and biochemical studies investigating its unusual reactivity. We demonstrate that free L-tyrosine is not readily accepted as a substrate, despite previous reports to the contrary. Instead, we propose that RufO natively modifies L-tyrosine tethered to the peptidyl carrier protein of a non-ribosomal peptide synthetase encoded by the same biosynthetic gene cluster and present both docking and molecular dynamics simulations consistent with this hypothesis. Our results expand the scope of direct enzymatic nitration reactions and provide the first evidence for such a modification of a peptide synthetase-bound substrate that may aid in the downstream development of biocatalytic approaches to synthesize rufomycin analogs and related drug candidates.

Keywords

X-ray crystallography
Heme
Metalloenzyme
Molecular Dynamics
Molecular Docking
Cytochrome P450

Supplementary materials

Title
Description
Actions
Title
Supplemental Information
Description
Detailed description of materials and methods; MS data for enzymatic assays; crystallographic and refinement statistics; A-domain sequence analysis; stopped-flow data; docking simulations; and other supplemental figures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.