A case study on spin-state effect of iron catalysis

26 May 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Iron catalysts are ideal transition metal catalysts because of the Earth abundant, cheap, biocompatible features of the iron salts. Iron catalysts often have unique open-shell structures that easily undergo spin crossover in chemical transformations, a feature rarely found in noble metal catalysts. Unfortunately, little is known currently about how the open-shell structure and spin crossover affect the reactivity and selectivity of iron catalysts, which makes the development of iron catalysts a low efficient trial-and-error program. In this paper, a combination of experiments and theoretical calculations revealed that the iron-catalyzed hydrosilylation of alkynes is typical spin-crossover catalysis. Deep insight into the electronic structures of a set of well-defined open-shell active formal Fe(0) catalysts revealed that the spin-delocalization between the iron center and the 1,10-phenanthroline ligand effectively regulates the iron center’s spin and oxidation state to meet the opposite electrostatic requirements of oxidative addition and reductive elimination, respectively, and the spin crossover is essential for this electron transfer process. The triplet transition state was essential for achieving high regioselectivity through tuning the nonbonding interactions. These findings provide an important reference for understanding the effect of catalyst spin state on reaction. It is inspiring for the development of iron catalysts and other Earth-abundant metal catalysts, especially from the point of view of ligand development.

Keywords

spin-state effect • spin-delocalization • spin crossover • iron-catalysis • alkyne hydrosilylation

Supplementary materials

Title
Description
Actions
Title
Supplementary information
Description
All supporting informations
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.