Theoretical studies on the kinetics and dynamics of the BeH+ + H2O reaction: Comparison with experiment

23 May 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The reaction of BeH+ with background gas H2O may play a role in qubit loss for quantum information processing with Be+ as trapped ions, and yet its reaction mechanism has not been well understood until now. In this work, a globally accurate, full-dimensional ground-state potential energy surface (PES) for the BeH+ + H2O reaction was constructed by fitting a total of 170,438 ab initio energy points at the level of RCCSD(T)-F12/aug-cc-pVTZ using the fundamental invariant-neural network method. The total root-mean-square error of the final PES was 0.178 kcal mol-1. For comparison, quasi-classical trajectory calculations were carried out on the PES at the experimental temperature of 150 K. The obtained thermal rate constant and product branching ratio of the BeD+ + H2O reaction agreed quite well with experimental results. In addition, the vibrational state distributions and energy disposals of the products were calculated and rationalized by the sudden vector projection model.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.