Molecular auxetic polymer of intrinsic microporosity via conformational switching of a cavitand crosslinker

17 May 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Auxetics are materials characterized by a negative Poisson’s ratio (NPR), an uncommon mechanical behavior corresponding to a transversal deformation tendency opposite to the traditional materials. Here we present the first example of a 3D synthetic molecular auxetic polymer, obtained by embedding a conformationally expandable cavitand as crosslinker into a rigid polymer of intrinsic microporosity (PIM). The rigidity and microporosity of the polymeric matrix are pivotal to maximize the expansion effect of the cavitand that, under mechanical stress, can assume two different conformations: a compact vase one and an extended kite form. The auxetic behavior and the corresponding NPR of the proposed material is predicted by a specific micromechanical model that considers the cavitand volume expansion ratio, the fraction of the cavitand crosslinker in the polymer, and the mechanical characteristics of the polymer backbone. The reversible auxetic behavior of the material is experimentally verified via Digital Image Correlation technique (DIC) performed during the mechanical tests on films obtained by blending the auxetic crosslinked polymer with pristine PIM. Two specific control experiments prove that the mechanically driven conformational expansion of the cavitand crosslinker is the sole responsible of the observed NPR of the polymer.

Keywords

molecular auxetic
cavitands
polymers of intrinsic microporosity
conformational switch

Supplementary materials

Title
Description
Actions
Title
Supplementary information
Description
Supplementary experimental details, synthetic procedures, materials characterizations and theoretical models
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.