Reliable Gas Phase Reaction Rates at Affordable Cost by Means of the Parameter-Free junChS-F12 Model Chemistry

08 May 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


A recently developed strategy for the computation at affordable cost of reliable barrier heights ruling reactions in the gas-phase (junChS, [Barone et al. J. Chem. Theory Comput. 2021, 17, 4913-4928]) has been extended to the employment of explicitly-correlated (F12) methods. A thorough benchmark based on a wide range of prototypical reactions shows that the new model (referred to as junChS-F12), which employs cost-effective revDSD-PBEP86-D3(BJ) reference geometries, has an improved performance with respect to its conventional counterpart and outperforms the most well-known model chemistries without the need of any empirical parameter and at an affordable computational cost. Several benchmarks show that revDSD-PBEP86- D3(BJ) structures and force fields provide zero point energies and thermal contributions, which can be confidently used, together with junChS-F12 electronic energies, for obtaining accurate reaction rates in the framework of the master equation approach based on the ab initio transition-state theory.


composite methods
rate constants
atmospheric chemistry
chemical kinetics

Supplementary materials

Supporting Information: Reliable Gas Phase Reaction Rates at Affordable Computer Cost by Means of the Parameter-Free junChs-F12 Model Chemistry
Additional Data for Energy Barriers (Table S1).


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.