Life cycle assessment of comparing different nutrient recovery systems from municipal wastewater: A path towards self-reliance and sustainability

27 April 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Nutrient recovery systems can help to mitigate the negative effects of N and P in WW (wastewater), which when not recovered causes eutrophication in aquatic ecosystems. Using SimaPro (V9.3), the lifecycle assessment (LCA) of four nutrient recovery systems and sewage treatment plant (STP) were compared in this study. The findings showed that a fuel cell with a single-pot WW treatment system can function as a negative emission system with a global warming potential (GWP) of -234 gCO2 Eq./m3 of WW. Nutrient recovery reduces carbon footprint by 56–98% when compared to traditional fertilizers like diammonium phosphate (DAP) and urea. One of the main conclusions of this research was that single-pot systems perform better for the environment than add-on systems, which suggests that microalgae could perform better for the environment in a single-pot system. Recovering nutrients from WW not only improves self-reliance in the economy by decrementing the fertilizer import but also saves the environment.


Wastewater treatment
Nutrient recovery
Life cycle assessment
Circular economy


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.