A tutorial mini-review on nanoporous carbons from biosourced building blocks: ordered hierarchical nanoarchitectures through benign methodologies

25 April 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ordered hierarchically porous carbons exhibiting micro- and mesopores are state-of-the-art porous structures with extraordinary performance in a range of applications (e.g., electrochemistry, catalysis, water treatment). Nevertheless, they are mostly prepared using petroleum-based chemicals, through resource- and energy-intensive, environmentally unfriendly processes. In this tutorial mini-review, we highlight major limitations in the methodologies, and showcase important achievements towards developing more sustainable synthetic strategies. Compared to multi-step hard-templating/nano-casting procedures, soft-templating techniques can provide more efficient, benign, and direct ways to produce these nanostructures. The original soft-templating method, using Pluronic® surfactants as structure-directing agents and phenolic resins as carbon precursors, has been substantially modified over the years in light of sustainability issues. The formaldehyde crosslinker has been replaced with more benign, less toxic alternatives (e.g., glyoxal), and catalyst-free crosslinking approaches have been developed. Furthermore, the use of biobased building-blocks for the carbon precursor, such as lignin, plant-derived polyphenols (e.g., tannins), and various saccharides (e.g., D-glucose, D-fructose), has also been explored. Novel techniques, such as the coordination-induced self-assembly, mechanosynthesis, and modified hydrothermal treatment strategies are amongst the greenest processes developed so far. We give some critical comments on ongoing research in this field and point towards interesting research directions.

Keywords

advanced materials
biomass
hierarchical design
ordered mesostructure
micropore
soft-templating
nanostructure
nanomaterials
environment

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.