Liquid-liquid phase separation and viscosity in biomass burning organic aerosol and climatic impacts

21 April 2023, Version 1


Smoke particles generated by burning biomass consist mainly of organic aerosol, referred to as biomass-burning organic aerosol (BBOA). BBOA influences the climate by scattering and absorbing solar radiation or acting as nuclei for cloud formation. The viscosity and the phase behavior (i.e. the number and type of phases present in a particle) are properties of BBOA that are expected to impact several climate-relevant processes but remain highly uncertain. We studied the phase behavior of BBOA using fluorescence microscopy, and showed that BBOA particles comprise two organic phases (a hydrophobic and a hydrophilic phase) across a wide range of atmospheric relative humidity (RH). We determined the viscosity of the two phases using a photobleaching method, and showed that the two phases possess different RH-dependent viscosities. The viscosity of the hydrophobic phase is largely independent of the RH from 0 to 95%. For temperatures less than 230 K, the hydrophobic phase is glassy (viscosity > 1012 Pa s) at RHs below 95%, with possible implications for heterogeneous reaction kinetics and cloud formation in the atmosphere. Using a kinetic multi-layer model (KM-GAP), we investigated the effect of two phases on the atmospheric lifetime of brown carbon within BBOA, which is a climate-warming agent. We showed that the presence of two phases can increase the lifetime of brown carbon in the planetary boundary layer and polar regions compared to previous modelling studies. Hence, liquid-liquid phase separation can lead to an increase in the predicted warming effect of BBOA on climate.


biomass burning
phase behavior
brown carbon
heterogeneous reaction kinetics

Supplementary materials

Supplementary Information
Microscopy images of liquid-liquid phase separation in BBOA particles, parameterizations of temperature- and RH-dependent viscosity of BBOA and diffusion coefficients of ozone, observation of phase behavior with fluorescence microscopy, rFRAP experiments to measure diffusion coefficients and accompanying figures, concentration calibration of added rhodamine-6G dye to BBOA films and accompanying figures, figure of woodsmoke generator setup, BrC mobility between different phases: fluorescence loss in photobleaching and accompanying figures, KM-GAP modeling parameters and results,


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.