Sequential bond dissociation energies of (Th(CO)x)+,x = 1-6: Quantum computational studies alternative approach. The capabilities of mass-spectrometry in the determination of molecule geometry

20 April 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The calculation problem of bond-dissociation energy BDE((CO)x-1Th+-CO), x = 1-6 was solved using the fundamental law of nature determining the dependence of chemical bond dissociation energy on its length. The recommended experimental values from literature are as follows bond dissociation energies BDE(Th+-CO)= 0.940.06 eV, BDE((CO)Th+-CO)=1.050.09 eV, BDE((CO)2Th+-CO)=1.090.05 eV, BDE((CO)3Th+-CO)=0.820.07 eV, BDE((CO)4Th+-CO)=0.630.05 eV, BDE((CO)5Th+-CO)=0.700.05 eV. The theoretical data calculated in this article are 0.934 eV, 1.056 eV, 1.082 eV, 0.82 eV, 0.634 eV, 0.708 eV correspondingly which is in good agreement with the literature. For the first time it was shown that experimental values of bond-dissociation energies, obtained with mass-spectrometry, can be successfully utilized in the calculations of the geometrical properties of molecules. The carried out calculations for thorium hexacarbonyl cation Th(CO)6+ determine its structure as tetragonal bipyramid. The found bond length values r((CO)x-1 Th+-CO) are 2.414 A and 2.444 A for equatorial and axial bonds correspondingly.

Keywords

chemical bond dissociation energy
chemical bond length
thorium carbonyl cation

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.