High-performing All-solid-state Sodium-ion Batteries Enabled by the Presodiation of Hard Carbon

20 April 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


All-solid-state sodium ion batteries (AS3iBs) are highly sought after for stationary energy storage systems due to their suitable safety and stability over a wide temperature range. Hard carbon (HC), which is low cost, exhibits a low redox potential, and a high capacity, is integral to achieve a practical large-scale sodium-ion battery. However, the energy density of the battery utilizing this anode material is hampered by its low initial Coulombic efficiency (ICE). Herein, two strategies, namely (i) thermal treatment and (ii) presodiation by thermal decomposition of NaBH4, are explored to improve the ICE of pristine HC. Raman spectroscopy, X-ray photoelectron spectroscopy and electrochemical characterizations elucidate that the thermal treatment increases the Csp2 content in the HC structure, while the presodiation supplies the sodium to occupy the intrinsic irreversible sites. Consequently, presodiated HC exhibits an outstanding ICE (>99%) compared to the thermally treated (90%) or pristine HC (83%) in half-cell configurations. More importantly, AS3iB using presodiated HC and NaCrO2 as the anode and cathode, respectively, exhibits a high ICE of 92% and an initial discharge energy density of 294 Wh kg_cathode^(-1)


solid-state batteries
initial coulombic efficiency
hard carbon


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.