Improving efficiency and sustainability of chitin bioconversion through a combination of Streptomyces secretomes and mechanical-milling

18 April 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Chitin, particularly α-chitin, is the most abundant and highly recalcitrant form, fortified by an intricate network of hydrogen bonds. Efficient valorization of α-chitin requires a mild pre-treatment and enzymatic hydrolysis. Streptomyces spp. secrete chitin-active CAZymes that can efficiently tackle the recalcitrant problem of chitin biomass. To better understand the potential of Streptomyces spp., a comparative analysis was performed between the novel isolate, Streptomyces sp. UH6 and the well-known chitin degraders, S. coelicolor and S. griseus. Growth studies and FE-SEM analysis revealed that all three Streptomyces spp. could utilize and degrade both α- and β-chitin. Zymogram analysis showed expression of 5-7 chitinases in the secretomes of Streptomyces strains. The chitin-active-secretomes produced by Streptomyces sp. UH6 and S. griseus were optimally active at acidic pH (pH 4.0 and 5.0) and 50°C. Time-course degradation of α- and β-chitin with the secretomes generated N-acetyl-D-glucosamine (GlcNAc) and N,N-diacetylchitobiose [(GlcNAc)2] as the predominant products. Further, the highly crystalline α-chitin was subjected to pre-treatment by ball-milling, which reduced the crystallinity from 88% to 56.6% and increased the BET surface area by 3-folds. Of note, the activity of all three Streptomyces secretomes was improved by a mild pre-treatment, while Streptomyces sp. UH6 secretome displayed improved GlcNAc and (GlcNAc)2 yields by 14.4 and 9.6-folds, respectively. Overall, our results suggest that the Streptomyces chitin-active-secretomes, particularly Streptomyces sp. UH6, can be deployed for efficient valorization of chitin biomass and to establish an economically feasible and eco-friendly process for valorizing highly recalcitrant α-chitin.

Keywords

α-Chitin
Streptomyces
Chitin-Active-Secretome
Ball-Milling
(GlcNAc)1-2

Supplementary materials

Title
Description
Actions
Title
Improving efficiency and sustainability of chitin bioconversion through a combination of Streptomyces secretomes and mechanical-milling
Description
Supplementary Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.