Abstract
Bottom-up electrochemical synthesis of atomically thin materials is desirable yet challenging, especially for non-van der Waals (vdW) materials. Thicknesses below few nm have not been reported yet, posing the question how thin can non-vdW materials be electrochemically synthesized? This is important as materials with (sub-) unit cell thickness often show remarkably different properties compared to their bulk form or thin films of several nm thickness. Here, we introduce a straightforward electrochemical method utilizing the angstrom-confinement of laminar reduced graphene oxide (rGO) nanochannels to obtain a centimeter-scale network of atomically thin (< 0.43nm) 2D-transition metal oxides (2D-TMO). The angstrom-confinement provides a thickness limitation, forcing sub-unit cell growth of 2D-TMO with oxygen and metal vacancies. We showcase that Cr2O3, a material without significant catalytic activity for OER in bulk form, can be activated as a high-performing catalyst if synthesized in the 2D sub-unit cell form. Our method displays the high activity of sub-unit cell form while retaining the stability of bulk form, promising to yield unexplored fundamental science and applications. We show that while retaining the advantages of bottom-up electrochemical synthesis like simplicity, high yield, and mild conditions, the thickness of TMO can be limited to sub-unit cell dimensions.
Supplementary materials
Title
Angstrom-confined electrochemical synthesis of sub-unit cell non van der Waals 2D metal oxides
Description
Supplementary information
Actions