Room-temperature quantum coherence of entangled multiexcitons in a metal-organic framework

13 April 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Singlet fission (SF) can generate an exchange-coupled quintet triplet pair state 5TT, which could lead to the realization of quantum computing and quantum sensing using entangled multiple qubits even at room temperature. However, the observation of the quantum coherence of 5TT has been limited to cryogenic temperatures, and the fundamental question is what kind of material design will enable its room-temperature quantum coherence. Here we show that the quantum coherence of SF-derived 5TT in a chromophore-integrated metal-organic framework (MOF) can be over hundred nanoseconds at room temperature. The subtle motion of the chromophores in the MOF leads to the enough fluctuation of the exchange interaction necessary for 5TT generation, but at the same time does not cause severe 5TT decoherence. Furthermore, the phase and amplitude of quantum beating can be controlled by molecular motion, opening the way to room-temperature molecular quantum computing based on multiple quantum gate control.


Metal-Organic Framework
Singlet Fission
Quintet Multiexciton
Quantum Coherence

Supplementary materials

Supporting information
FT-IR spectra, TGA curve, nitrogen adsorption isotherm, transient absorption spectra, time-resolved EPR spectra, pulse EPR data, EPR simulations


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.