Abstract
Tailoring the molecular components of hybrid organic-inorganic materials enables precise control over their electronic properties. Designing electrically conductive coordination materials, e.g. metal-organic frameworks (MOFs), has relied on single-metal nodes because the metal-oxo clusters present in the vast majority of MOFs are not suitable for elec- trical conduction due to their localized electron orbitals. Therefore, the development of metal-cluster nodes with delocal- ized bonding would greatly expand the structural and electrochemical tunability of conductive materials. Whereas the cuboidal [Fe4S4] cluster is a ubiquitous cofactor for electron transport in biological systems, few electrically conductive artificial materials employ the [Fe4S4] cluster as a building unit due to the lack of suitable bridging linkers. In this work, we bridge the [Fe4S4] clusters with ditopic N-heterocyclic carbene (NHC) linkers through charge-delocalized Fe-C bonds that enhance electronic communication between the clusters. [Fe4S4Cl2(ditopic NHC)] exhibits a high electrical conductivity of 1 mS cm−1 at 25 oC, surpassing the conductivity of related but less covalent materials. These results highlight that synthetic control over individual bonds is critical to the design of long-range behavior in semiconductors.