Multicopper Clusters Catalyze the Oxidative Phenol Macrocyclization (OxPM) of Linear Peptides

10 April 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The biosynthesis of glycopeptide antibiotics such as vancomycin and other biologically active biaryl-bridged and diaryl ether-linked macrocyclic peptides includes key enzymatic oxidative phenol macrocyclization(s) of linear precursors. However, a simple and step-economical biomimetic version of this transformation remains underdeveloped. Here, we report highly efficient conditions for preparing biaryl-bridged and diaryl ether-linked macrocyclic peptides based on multicopper(II) catalysts. The selective syntheses of ring models of vancomycin and the arylomycin cyclic core illustrate the potential of this technology to facilitate the assembly of complex antibiotic macrocyclic peptides whose syntheses are considered highly challenging. The unprecedented ability of multicopper clusters to chelate tethered diphenols and promote intramolecular over intermolecular coupling reactions demonstrates that copper clusters can catalyze redox transformations that are not accessible by smaller metal catalysts.

Keywords

macrocyclic peptides
copper clusters
Oxidative phenol macrocyclization
Vancomycin
Arylomycin

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.