From Single-Particle to Collective Dynamics in Supercooled Liquids

10 April 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

It has been recognized recently that the considerable difference between photon-correlation (PCS) and dielectric (BDS) susceptibility spectra arises from their respective association with single-particle and collective dynamics. This work presents a model that captures the narrower width and shifted peak position of collective dynamics (BDS), given the single-particle susceptibility derived from PCS studies. Only one adjustable parameter is required to connect the spectra of collective and single-particle dynamics. This constant accounts for cross-correlations between molecular angular velocities and the ratio of the first-rank and second-rank single-particle relaxation times. The model is tested for three supercooled liquids, glycerol, propylene glycol, and tributyl phosphate, and is shown to provide a good account of the difference between BDS and PCS spectra. Since PCS spectra appear to be rather universal across a range of supercooled liquids, this model provides a first step toward rationalizing the more material specific dielectric loss profiles.

Keywords

glassy dynamics
dielectric spectroscopy
memory function
single-particle dynamics
collective dynamics

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Derivation of the KKM equation and properties of the liquids used in the analysis and calculations of their Kirkwood factors.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.