Polymer Reaction Engineering meets Explainable Machine Learning

06 April 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Due to the complicated polymerization technique and statistical composition of the polymer, tailoring its characteristics is a challenging task. Modeling of the polymerizations can contribute to deeper insights into the process. This study applies state-of-the-art machine learning (ML) methods for modeling and reverse engineering of polymerization processes. ML methods (random forest, XGBoost and CatBoost) are trained on data sets generated by an in house developed kinetic Monte Carlo simulator. The applied ML models predict monomer concentration, average molar masses and full molar mass distributions with excellent accuracy (R2 > 0.96). Reverse engineering results delivering the polymerization recipe for a targeted molar mass distribution are less accurate, but still only minor deviations from the targeted molar mass distribution are seen. The influences of the input variables in ML models obtained by explainability methods correspond to the expert expectations.

Keywords

polymers
machine learning
kinetic Monte Carlo simulation
multi-target-regression
reverse engineering
explainable AI

Supplementary materials

Title
Description
Actions
Title
Additional Tables and Figures
Description
Additional Tables and Figures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.