Nickel-catalyzed exhaustive hydrodefluorination of perfluoroalkyl arenes

29 March 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Perfluoroalkyl compounds are persistent environmental pollutants due to their strong C(sp3)−F bonds. Hydrodefluorination has emerged as a potential alternative disposal method for perfluoroalkyl compounds. Although the transformation of trifluoromethyl arenes into the corresponding methyl arenes has been studied by several research groups, hydrodefluorination reactions of longer perfluoroalkyl chains remain rare. Herein, we report exhaustive hydrodefluorination reactions of pentafluoroethyl arenes and longer-chain analogues using molecular nickel catalysis. Despite the cleavage of multiple C(sp3)−F bonds, the reaction already proceeds upon gentle heating (60 °C). A mechanistic investigation indicated that the reaction proceeds via benzylic hydrodefluorination reactions followed by homobenzylic ones. We reveal the multiple roles of the Ni catalyst, which include C−F bond cleavage, promotion of HF elimination, and hydrosilylation.

Keywords

Nickel catalyst
Hydrodefluorination
C-F bond activation
Perfluoroalkyl substances

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
The experimental and computational details and compound characterization data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.