Metallaphotocatalytic Amination of Aryl Chlorides Enabled by Highly Crystalline Acetylene-Based Hydrazone-linked Covalent Organic Frameworks

30 March 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Amination of aryl chlorides by metallaphotocatalysis is highly desired but remained practically challenging. Meanwhile, relying on soluble noble-metal photocatalysts suffers from resource scarcity and structural instability which limit their practical application. Here in, a highly crystalline acetylene-based hydrazone-linked BTH-THFEB COF is reported that enable metallaphotocatalytic amination of aryl chlorides. The non-planar effect of hydrazone linkage and weak interlayer attraction of acetylene bond were minimized by intralayer hydrogen-bonding. As a result, the COF showed not only an improved crystallinity and porosity, but also enhanced optical and electronic properties compared to a COF analogue without hydrogen-bonding. Notably, dual BTH-THFEB/Ni system afforded C─N coupling products from broad aryl chloride substrates in excellent yields (up to 99%) and good functional tolerance. Furthermore, BTH-THFEB is recoverable and reusable for five times photocatalysis cycles. This report demonstrates simple approach to tune the structure-activity relationship in COFs at molecular level.


Covalent organic frameworks
Aryl chlorides
Ni catalysis

Supplementary materials

Supporting Information
Additional data on synthesis and characterization of materials as well as photocatalysis data.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.