Quinone-functionalised carbons as new materials for electrochemical carbon dioxide capture

28 March 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The need for cost-effective carbon dioxide capture technology is rapidly increasing. To limit the global temperature increase to 1.5 °C within the next century, the level of CO2 mitigation needs to increase drastically. Current capture technology, i.e., amine scrubbing, provides several challenges that limit widespread deployment: high regeneration energy, high operational costs and degradation issues. An emerging energy-efficient technology that can address some of the limitations of amines is electrochemically driven carbon dioxide capture. For example, redox-active quinone molecules are capable of capturing carbon dioxide following electrochemical reduction, and can then be regenerated upon electrochemical oxidation. Despite great advances in the chemistry of quinones for electrochemical CO2 capture, however, the integration of quinones in carbon capture devices remains an ongoing challenge. Here we present a new class of quinone-functionalized electrodes for electrochemical CO2 capture, using the diazonium radical reaction to graft quinone molecules to a porous carbon surface. By grafting redox-active molecules to this conductive surface, not only is carbon dioxide capture significantly enhanced when the bound quinone species are electrochemically reduced, but the functionalization process also improves the energy storage of the carbon material. Through constant current experiments in the presence of CO2, reversible carbon capture was observed with initial uptake capacities at 0.4 mmol g–1 which stabilizes to 0.2 mmol g–1 over 100 cycles with an energy consumption of 254 kJ mol–1 per cycle. Our facile low-cost synthesis of quinone-functionalised carbons is highly tunable since both the carbon and redox-active molecule can be modified, and our work therefore paves the way for the design and discovery of improved electrode materials for electrochemical CO2 capture.

Keywords

Carbon capture
Electrochemistry
CCUS

Supplementary materials

Title
Description
Actions
Title
Supplementary Information: Quinone-functionalised carbons as new materials for electrochemical carbon dioxide capture
Description
Containing additional data referred to in the paper. Characterisation data, raw data sets and calculations are all included.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.