Photo-SABRE: hyperpolarization of cis-trans photoswitchable molecules by parahydrogen

27 March 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Over the past decade, azobenzene-based molecular photoswitches have emerged as promising control devices in a range of fields, including chemistry, biology, materials science, physics, energy storage and pharmacology. Previous studies revealed that cis isomer of azobenzene gains strong nonequilibrium polarization (called hyperpolarization) of 15N nuclear spins through interaction with parahydrogen molecules (i.e., a dihydrogen isomer with protons having zero total spin, pH2) in the reversible exchange with Ir-complex. This technique, known as SABRE (Signal Amplification by Reversible Exchange), enhances inherently weak NMR signals by several orders of magnitude at relatively low operational cost. We demonstrate that performing SABRE in the presence of light irradiation allows to hyperpolarize trans-azobenzene, which direct coordination with the SABRE Ir-complex is sterically hindered. The proposed approach, which we called photo-SABRE, is robust and efficient, as well as non-destructive and reproducible. It combines coherent polarization transfer from pH2 to cis-azobenzene with the reversible cis-trans-photoisomerization. Moreover, using photo-SABRE, it is possible to hyperpolarize the long-lived spin order of 15N spin pair in trans-azobenzene, with a lifetime of about 25 minutes, which greatly exceeds the ordinary relaxation times T1 of its 15N nuclei at high (around 10 s) and low (around 200 s) magnetic fields. Photo-SABRE amplification of the NMR signals of cis-trans photoswitchable compounds has a potential to become a valuable tool in the ascending field of photopharmacology and novel light-controlled materials.

Keywords

NMR spectroscopy
hyperpolarization
parahydrogen induced polarization
SABRE
azobenzene
cis-trans isomerization
long-lived spin states

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.