Comparison of monophosphine and bisphosphine precatalysts for Ni-catalyzed Suzuki-Miyaura cross-coupling: understanding the role of ligation state in catalysis

24 March 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Practical advances in Ni-catalyzed Suzuki-Miyaura cross-coupling (SMC) have been limited by a lack of mechanistic understanding of phosphine ligand effects. While bisphosphines are commonly used in these methodologies, we have observed instances where monophosphines can provide comparable or higher levels of reactivity. Seeking to understand the role of ligation state in catalysis, we performed a head-to-head comparison study of Ni SMCs catalyzed by mono and bisphosphine precatalysts using six distinct substrate pairings. Significant variation in optimal precatalyst was observed, with the monophosphine precatalyst tending to outperform the bisphosphines with electronically deactivated and sterically hindered substrates. Mechanistic experiments revealed a role for monoligated (P1Ni) species in accelerating the fundamental organometallic steps of the catalytic cycle, while highlighting the need for bisligated (P2Ni) species to avoid off-cycle reactivity and catalyst poisoning by heterocyclic motifs. These findings provide guidelines for ligand selection against challenging substrates and future ligand design tailored to the mechanistic demands of Ni-catalyzed SMCs.

Keywords

cross coupling
Nickel catalysis
mechanism

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Characterization data and procedures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.