Battery metals recycling by flash Joule heating

24 March 2023, Version 1


The staggering accumulation of end-of-life lithium-ion batteries (LIBs) and the growing scarcity of battery metal sources have triggered an urgent call for an effective recycling strategy. However, it is challenging to reclaim these metals with both high efficiency and low environmental footprint. We use here a pulsed direct current flash Joule heating (FJH) strategy that heats the black mass, the combined anode and cathode, to >2100 K within seconds, leading to ~1000-fold increase in subsequent leaching kinetics. There are high recovery yields of all the battery metals, regardless of their chemistries, using even diluted acids like 0.01 M HCl, thereby lessening the secondary waste stream. The ultrafast high-temperature achieves thermal decomposition of the passivated solid-electrolyte-interphase and valance-state reduction of the hard-to-dissolve metal compounds, while mitigating diffusional loss of volatile metals. Life-cycle-analysis vs current recycling methods shows that FJH significantly reduces the environmental footprint of spent LIB processing, while turning it into an economically attractive process.


black mass
lithium-ion batteries
recycling battery cathode and anode
battery metals recycling
flash Joule heating


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.