Water-Assisted Ion Conduction in Solid-State Charge-Transfer Complex Electrolytes for Lithium Batteries

23 March 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Current research on solid-state organic electrolytes mainly focuses on polymer electrolytes where ion transport is facilitated by chain segmental motion. A limited number of prior reports suggest that solid-state electrolytes based on organic charge-transfer (CT) complexes can have surprisingly high ionic conductivity. Here, we report that processing and environmental conditions drastically impact charge transport properties of CT complex electrolytes based on tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) mixed with lithium bis(trifluoromethylsulfonylimide) (LiTFSI). Thermal annealing and water vapor treatment decreases electronic conductivity and increases ionic conductivity. The electrolyte with 1-1-2-0.45 molar ratio of TTF-TCNQ-LiTFSI-H2O has an ionic conductivity of 2 × 10-3 S/cm at 25 °C with order 104 times lower electronic conductivity. In this system where ion conduction is decoupled from the mobility of the organic phase, thermal annealing helps reduce CT connectivity and expose more surfaces to interact with LiTFSI, and water promotes the dissociation of LiTFSI.




Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.