Discovery of Ag as an Active and Selective Catalyst for the Electrochemical Synthesis of Urea from NO3- and CO2 with ~100 % Selectivity at -100 mA/cm2 Urea Current Density

23 March 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The current method to synthesize urea is highly energy intensive and has a massive carbon footprint. Electrochemical synthesis of urea from NO3- and CO2 is an attractive and sustainable way as renewable energy can be used to synthesize green urea at ambient conditions by utilizing the waste NO3- and CO2 from the air or flue gas. In this work, we conduct a thorough catalytic screening on various metal-based catalysts. ~100 % urea Faradaic efficiency and ~-100 mA/cm2 of urea current density is observed at -1.2 V vs. RHE when Ag GDE is used. FTIR analysis further confirms the formation of urea and the presence of *CO intermediates. The excellent kinetics and selectivity towards urea on Ag are explained by a combination of facile first and second C-N bond formation steps and an endergonic (ΔG > 1.5 eV) formamide (HCONH2) formation step from *CONH2 from our DFT studies.

Supplementary materials

Title
Description
Actions
Title
Supplementary information
Description
Supplementary information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.