Arylidene Meldrum's Acid: A Versatile Structural Motif for the Design of Enzyme-Responsive "Covalent-Assembly" Fluorescent Probes with Tailor-Made Properties

22 March 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Latent cyclic carbon-centered nucleophiles (latent C-nucleophiles) are recently proving their value in the field of reaction-based fluorescent probes, far beyond their primary utility in organic synthesis. They are typically used to introduce a Michael acceptor moiety acting as a recognition/reaction site for analyte to be detected or as a kinetic promoter of fluorogenic cascade reactions triggered by a reactive species. C-nucleophiles bearing a further reactive handle offer an additional opportunity for tuning the physicochemical/targeting properties or providing drug-releasing capabilities to these probes, through the covalent attachment of ad hoc chemical moiety. In order to implement such strategy to fluorogenic/chromogenic enzyme substrates based on the "covalent-assembly" principle, we have explored the potential of some functionalized derivatives of barbituric acid, piperidine-2,4-dione and Meldrum's acid. Our investigations based on the rational design and analytical validations of enzyme-responsive caged precursors of fluorescent pyronin dyes and 7-(diethylamino)coumarin-3-carboxylic acid, led to identify a versatile candidate suitable for this late-stage structural optimization approach with a minor impact on stability and activation kinetics of probe. This Meldrum's acid derivative, synthesized from levulinic acid, enables to either enhance water solubility or achieve the reversible conjugation of a targeting ligand, while promoting in situ formation of fluorophore upon enzymatic activation. This study opens the way to novel multifunctional fluorescence imaging probes and optically modulated small conjugate-based theranostics drawing on the promising "covalent-assembly" strategy.


covalent assembly
domino reactions
fluorescent probes
Meldrum's acid


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.