Near-Infrared-Light-Activatable Proximity Labeling of Bead-Binding Proteins

21 March 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Photocatalytic proximity labeling has recently undergone significant advances as a valuable tool for understanding protein–protein and cell–cell interactions. This paper reports the first photocatalytic protein-labeling approach in which the reaction can be controlled using near-infrared (NIR) light (810 nm). Magnetic affinity beads with encapsulated sulfur-substituted silicon (IV) phthalocyanine, which produces singlet oxygen upon NIR irradiation, were prepared. We have developed a method in which the histidine residues of proteins bound to the ligands on the beads are selectively oxidized and labeled by the nucleophilic labeling reagent while minimizing nonspecific adsorption to the dye. Beads with aryl sulfamide, lactose, or CZC-8004 ligands immobilized on their surface can be used to label proteins that bind these ligands, as well as their protein–protein interaction partners.

Keywords

near-infrared light
proximity labeling
singlet oxygen
affinity beads
protein chemical labeling

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.