DrugEx: Deep Learning Models and Tools for Exploration of Drug-like Chemical Space

17 March 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


The discovery of novel molecules with desirable properties is a classic challenge in medicinal chemistry. With the recent advancements of machine learning, there has been a surge of de novo drug design tools. However, few resources exist that are both user-friendly as well as easily customisable. In this application note, we present the new versatile open-source software package DrugEx for multi-objective reinforcement learning. This package contains the consolidated and redesigned scripts from the prior DrugEx papers including multiple generator architectures and a variety of scoring tools and multi-objective optimisation methods. It has a flexible application programming interface and can readily be used via the command line interface or the graphical user interface GenUI. The DrugEx package is publicly available at https://github.com/CDDLeiden/DrugEx


de novo drug design
reinforcement learning
multi-objective optimisation
deep learning
chemical space

Supplementary materials

Supplementary Information
Further details about the generator architectures (S1), the data pre-processing (S2), the environment (S3) and sampling statistics (S4).

Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.