Machine learning predictions of low thermal conductivity: comparing TaVO5 and GdTaO4

15 March 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Advancements in materials discovery tend to rely disproportionately on happenstance and luck rather than employing a systematic approach. Recently, advances in computational power have allowed researchers to build computer models to predict the material properties of any chemical formula. From energy minimization techniques to machine learning based models, these algorithms have unique strengths and weaknesses. However, a computational model is only as good as its accuracy when compared to real-world measurements. In this work, we take two recommendations from a thermoelectric machine learning model, TaVO5 and GdTaO4, and test their thermoelectric properties of Seebeck coefficient, thermal conductivity, and electrical conductivity. We see that the predictions are mixed; thermal conductivities are correctly predicted, while electrical conductivities and Seebeck coefficients are not. Furthermore, we discover a possible new avenue of research of a low thermal conductivity oxide family.

Keywords

thermoelectrics
oxides
data-driven
materials informatics
thermal conductivity
NTE

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.