Abstract
High-performance bioinspired materials have shown rapid development over the last decade. Examples are brick-and-mortar hierarchical structures, which are often achieved via solvent evaporation. Although good properties are claimed, most systems are composed of stacked or intercalated platelets. Exfoliation is a crucial step to give ultimate anisotropic properties, e.g. thermal, mechanical and barrier properties. We propose a general framework for all the various types of micro-scale structures that should be distinguished for 2D-filler nanocomposites. In particular, the exfoliated state is systematically explored by the immobilization of montmorillonite platelets via (gelatin) hydrogelation. Scattering techniques were used to evaluate this strategy at the level of the particle dispersion and the regularity of spatial arrangement. The gelatin/montmorillonite exfoliated nanostructures are fully controlled by the filler volume fraction since the observed gallery d-spacings perfectly fall onto the predicted values. Surprisingly, X-ray analysis also revealed short- and quasi long-range arrangement of the MMT at high loading.