Influence of temperature on the performance of carbon- and ATO-supported OER catalysts in a GDE setup

13 March 2023, Version 1

Abstract

State-of-the-art industrial electrocatalysts for the oxygen evolution reaction (OER) under acidic conditions are Ir-based. Considering the scarce supply of Ir, it is imperative to use the precious metal as efficiently as possible. In this work, we immobilized ultrasmall Ir and Ir0.4Ru0.6 nanoparticles on two different supports to maximize their dispersion. One high surface area carbon support serves as reference but has limited technological relevance due to its lack of stability. The other support, antimony-doped tin oxide (ATO), has been proposed in the literature as a possible better support for OER catalysts. Temperature-dependent measurements performed in a newly developed gas diffusion electrode (GDE) setup reveal that surprisingly the catalysts immobilized on commercial ATO performed worse than their carbon-immobilized counterparts. The measurements suggest that the ATO support deteriorates particularly fast at elevated temperatures.

Content

Supplementary materials

Supporting Information
Supporting Information

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.