Energy Flows in Static and Programmable Catalysts

14 March 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Programmable catalysts that change on the time scale of a catalytic cycle provide a new opportunity to control the flow of energy to reactants and products to promote faster and more selective chemistry. While traditional chemical manufacturing processes consume energy to achieve favorable reaction conditions, programmable catalysts aim to dynamically add or remove energy to catalytic cycles through perturbations of the catalytic surface via strain, charge, or light. These surface energy flows are quantified by the changes in adsorbate binding energy with time, and the overall efficiency relating energy inputs to catalytic performance are defined by the characteristics of the undulating catalytic surface. Understanding and quantification of energy flows in programmable catalysts provides baseline definitions and metrics for comparing dynamic conditions and identifying optimal catalytic performance for more efficient chemical manufacturing.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.