Discovering Chemically Novel, High-Temperature Superconductors

13 March 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


One of the biggest unsolved problems in condensed matter physics is what mechanism causes high-temperature superconductivity and if there is a material that can exhibit superconductivity at both room temperature and atmospheric pressure. Among the many important properties of a superconductor, the critical temperature (Tc) or transition temperature is the point at which a material transitions into a superconductive state. In this implementation, machine learning is used to predict the critical temperatures of chemically unique compounds in an attempt to identify new chemically novel, high-temperature superconductors. The training data set (SuperCon) consists of known superconductors and their critical temperatures, and the testing data set (NOMAD) consists of around 700,000 novel chemical formulae. The chemical formulae in these data sets are first passed through a collection of rapid screening tools, SMACT, to check for chemical validity. Next, the DiSCoVeR algorithm is used to train on the SuperCon data to form a model, and then screens through batches of the formulae in the NOMAD data set. Having a combination of a chemical distance metric, density-aware dimensionality reduction, clustering, and a regression model, the DiSCoVeR algorithm serves as a tool to identify and assess these superconducting compositions [1]. This research and implementation resulted in the screening of chemically novel compositions exhibiting critical temperatures upwards of 150 K, which correlates to superconductors in the cuprate class. This implementation demonstrates a process of performing machine learning-assisted superconductor screening (while exploring chemically distinct spaces) which can be utilized in the materials discovery process.


machine learning
materials informatics
high-temperature superconductor
critical temperature
transition temperature

Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.