Standardizing chemical compounds with language models

10 March 2023, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

With the growing amount of chemical data stored digitally, it has become crucial to represent chemical compounds accurately and consistently. Harmonized representations facilitate the extraction of insightful information from datasets, and are advantageous for machine learning applications. To achieve consistent representations throughout datasets, one relies on molecule standardization, which is typically accomplished using rule-based algorithms that modify descriptions of functional groups. Here, we present the first deep-learning model for molecular standardization. We enable custom standardization schemes based solely on data, which, as additional benefit, support standardization options that are difficult to encode into rules. Our model achieves over 98% accuracy in learning two popular rule-based standardization protocols. We then follow a transfer learning approach to standardize metal-organic compounds (for which there is currently no automated standardization practice), based on a human-curated dataset of 1512 compounds. This model predicts the expected standardized molecular format with a test accuracy of 75.6%. As standardization can be considered, more broadly, a transformation from undesired to desired representations of compounds, the same data-driven architecture can be applied to other tasks. For instance, we demonstrate the application to compound canonicalization and to the determination of major tautomers in solution, based on computed and experimental data.

Keywords

Deep learning
Molecule standardization
Natural language processing
Chemoinformatics

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.