Origin of Catalysis and Regioselectivity of Lewis Acid-Catalyzed Diels-Alder Reactions with Tropone

09 March 2023, Version 1

Abstract

We have studied the uncatalyzed and Lewis acid (LA)-catalyzed cycloaddition reaction between tropone and 1,1-dimethoxyethene using dispersion-corrected relativistic density functional theory (DFT). The LA catalysts BF3, B(C6H5)3, and B(C6F5)3 efficiently accelerate both the competing [4+2] and [8+2] cycloaddition reactions by lowering the activation barrier up to 12 kcal mol–1 compared to the uncatalyzed reaction. Our study reveals that the LA catalyst promotes both cycloaddition reaction pathways by LUMO-lowering catalysis and demonstrates that Pauli-lowering catalysis is not always the operative catalytic mechanism in cycloaddition reactions. Judicious choice of the LA catalyst can effectively impart regiocontrol of the cycloaddition: B(C6H5)3 furnishes the [8+2] adduct while B(C6F5)3 yields the [4+2] adduct. We discovered that the regioselectivity shift finds its origin in the ability of the LA to absorb distortion by adopting a trigonal pyramidal geometry around the boron atom.

Content

Supplementary materials

Supporting Information
Supporting Information of Origin of Catalysis and Regioselectivity of Lewis Acid-Catalyzed Diels-Alder Reactions with Tropone

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.