Efficient C(sp3)-H carbonylation of light and heavy hydrocarbons with carbon monoxide via HAT photocatalysis in flow

06 March 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Despite their abundance in organic molecules, considerable limitations still exist in synthetic methods that target the direct C-H functionalization at sp3-hybridized carbon atoms. This is even more the case for light alkanes, which bear some of the strongest C-H bonds known in Nature, requiring extreme activation conditions that are not tolerant to most organic molecules. To bypass these issues, synthetic chemists rely on prefunctionalized alkyl halides or organometallic coupling partners. However, new synthetic methods that target regioselectively C-H bonds in a variety of different organic scaffolds would be of great added value, not only for the late-stage functionalization of biologically active molecules but also for the catalytic upgrading of cheap and abundant hydrocarbon feedstocks. Here, we describe a general, mild and scalable protocol which enables the direct C(sp3)-H carbonylation of saturated hydrocarbons, including natural products and light alkanes, using photocatalytic hydrogen atom transfer (HAT) and gaseous carbon monoxide (CO). Flow technology was deemed crucial to enable high gas-liquid mass transfer rates and fast reaction kinetics, needed to outpace deleterious reaction pathways, but also to leverage a scalable and safe process.


flow chemistry
light alkane
CH activation
hydrogen atom transfer

Supplementary materials

Supporting Information
This file contains reaction optimization, experimental procedures, compound characterization and spectroscopic data.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.