Achieving Tunable Organic Afterglow and UV Irradiation-Responsive Ultralong Room-Temperature Phosphorescence from Pyridine-Substituted Triphenylamine Derivatives

27 February 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Amorphous polymers with ultralong room-temperature phosphorescence (RTP) have received considerable attention due to their potential applications in anti-counterfeiting, bioimaging, and sensing. However, multifunctional polymer-based RTP materials endowed with color-tunability or stimulus-responsiveness are highly desirable but rarely reported. Herein, we have designed three pyridine-substituted triphenylamine derivatives and achieved ultralong RTP properties with both color-tunability and UV irradiation-responsiveness by embedding them into poly(vinyl alcohol) (PVA) and poly(methyl methacrylate) (PMMA) matrices, respectively. Notably, introducing the pyridine groups with the capabilities of promoting intersystem crossing (ISC) and forming hydrogen-bonding networks is essential for triggering efficient and ultralong RTP from doping PVA systems. Consequently, doping film TPA-2Py@PVA exhibits excellent RTP property with an ultralong lifetime of 798.4 ms and a high quantum yield of 15.2%. Moreover, by co-doping with the fluorescent dye rhodamine B, color-tunable persistent luminescence has been realized via phosphorescence energy transfer. More importantly, doping PMMA systems exhibit reversible UV irradiation-responsive ultralong RTP properties. Finally, various patterns are devised to demonstrate the potential applications of these doping PVA and PMMA systems in advanced anti-counterfeiting and information encryption. We believe this feasible and facile strategy to achieve multifunctional organic RTP materials with color-tunability and stimulus-responsiveness will provide new opportunities for high-tech applications.

Keywords

room-temperature phosphorescence
color-tunable
UV irradiation-responsive
phosphorescence energy transfer
anti-counterfeiting and information encryption

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.