Detection of fibril nucleation in micrometer-sized protein condensates and suppression of Sup35NM fibril nucleation by liquid-liquid phase separation

22 February 2023, Version 4
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Elucidating the link between amyloid fibril formation and liquid–liquid phase separation (LLPS) is crucial in understanding the pathologies of various intractable human diseases. However, the effect of condensed protein droplets generated by LLPS on nucleation (the initial step of amyloid formation) remains unclear because of the lack of available quantitative analysis techniques. This study aimed to develop a measurement method for the amyloid droplet nucleation rate based on image analysis. We developed a method to fix micrometer-sized droplets in gel for long-term observation of protein droplets with known droplet volumes. By combining this method with image analysis, we determined the nucleation dynamics in droplets of a prion disease model protein, Sup35NM, at the single-event level. We found that the nucleation was unexpectedly suppressed by LLPS above the critical concentration (C*) and enhanced below C*. We also revealed that the lag time in the Thioflavin T assay, a semi-quantitative parameter of amyloid nucleation rate, does not necessarily reflect nucleation tendencies in droplets. Our results suggest that LLPS can suppress amyloid nucleation, contrary to the conventional hypothesis that LLPS enhances it. We believe that the proposed quantitative analytical method will provide insights into the role of LLPS from a pathological perspective

Supplementary materials

Title
Description
Actions
Title
SI
Description
Supproting data.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.