Skeletal Editing Approach to Bridge-Functionalized Bicyclo[1.1.1]pentanes from Aza-Bicyclo[2.1.1]hexanes

22 February 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The ability to rapidly navigate a wide diversity of chemical space from simple building blocks is a cornerstone of medicinal chemistry campaigns. Aza-bicyclo[2.1.1]hexane (aza-BCH) and bicyclo[1.1.1]pentane (BCP) scaffolds have recently emerged as attractive classes of sp3-rich cores for replacing flat, aromatic scaffolds with metabolically resistant, three-dimensional frameworks. Over the last decade, these pharmaceutically desirable properties and increased synthetic accessibility have led to a marked increase in the adoption of aza-BCHs and BCPs into drug scaffolds. While multiple, independent methods have been developed for the preparation of these structural motifs, strategies to directly convert, or scaffold hop, between these bioisosteric subclasses through single-atom skeletal editing would enable efficient interpolation within this valuable chemical space. Herein, we describe a strategy to scaffold hop between aza-BCH and BCP cores through a nitrogen-deleting skeletal edit. Photochemical [2+2] cycloadditions, used to prepare multifunctionalized aza-BCH frameworks, are coupled with a subsequent deamination step to afford bridge-functionalized BCPs, for which few synthetic solutions currently exist. The modular sequence provides access to various privileged bridged bicycles of pharmaceutical relevance bearing substituents that can be further derivatized.


skeletal editing
nitrogen deletion

Supplementary materials

Supporting Information
Description of experimental protocols and characterization data


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.