Cellular uptake of metal oxide-based nanocomposites and targeting of chikungunya virus replication protein nsP3

20 February 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

BACKGROUND: Emergence of new pathogenic viruses along with adaptive potential of RNA viruses has become a major public health concern. Hence it becomes even more important to explore and evaluate the antiviral properties of nanocomposites which is an ever-evolving field of medical biology. METHODS: In this study, series of metal/metal oxide (Ag/NiO : NiO, AN-5%, AN-10% and AN-15%) and ternary metal oxide nanocomposites (Ag2O/NiO/ZnO : N/Z, A/N/Z-1, A/N/Z-2 and A/N/Z-3) have been synthesized and characterized. Cellular uptake of nanocomposites was confirmed by ICP-MS. RESULTS: Intriguingly, molecular docking of metal oxides in the active site of nsP3 validated the binding of nanocomposites to chikungunya virus replication protein nsP3. In-vitro antiviral potential of nanocomposites were tested by performing plaque reduction assay, cytopathic effect (CPE) analysis and qRT-PCR. The nanocomposites showed significant reduction in virus titre. Half-maximal inhibitory concentration (IC50) for A/N/Z-3 and AN-5% were determined to be 2.828 and 3.277 g/mL, respectively. CPE observation and qRT-PCR results were consistent with the data obtained from plaque reduction assay for A/N/Z-3 and AN-5%. CONCLUSION: These results, have opened new avenues for development of nanocomposites based antiviral therapies.

Keywords

Nanocomposite
Antivirals
CHIKV
ternary metal oxides

Supplementary materials

Title
Description
Actions
Title
Cellular uptake of metal oxide-based nanocomposites and targeting of chikungunya virus replication protein nsP3
Description
Synthesis of metal oxide based nanocomposites (Ag/NiO ,Ag2O/NiO/ZnO ) and characterization details of synthesized nanocomposites through XRD, TEM, XPS and BET.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.