- An open platform for automated optical chemical structure identification, segmentation and recognition in scientific publications

20 February 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The number of publications describing chemical structures has increased steadily over the last decades. However, the majority of published chemical information is currently not available in machine-readable form in public databases. It remains a challenge to automate the process of information extraction in a way that requires less manual intervention - especially the mining of chemical structure depictions. As an open-source platform that leverages recent advancements in deep learning, computer vision, and natural language processing, (Deep lEarning for Chemical ImagE Recognition) strives to automatically segment, classify, and translate chemical structure depictions from the printed literature. The segmentation and classification tools are the only openly available packages of their kind, and the optical chemical structure recognition (OCSR) core application yields outstanding performance on all benchmark datasets. The source code, the trained models and the datasets developed in this work have been published under permissive licences. An instance of the DECIMER web application is available at


Optical chemical structure recognition
Chemical data extraction
Deep learning

Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.