Accessing polyanionic redox in high voltage Li-rich thiophosphates

21 February 2023, Version 1

Abstract

In the search for novel positive electrode materials for lithium-ion cells, Li-rich sulfides are attracting increasing interest. Despite the success of polyoxyanion-based cathodes such as LiFePO4, their thiophosphate counterparts have remained largely unexplored. Here, the Li-rich thiophosphate Li2FeP2S6, which exhibits the highest known voltage (3 V) for a sulfide electrode, is investigated in a solid-state configuration. Through examination of isostructural transition-metal substitutions, we identify a novel Mn-substituted compound, Li2Fe0.8Mn0.2P2S6, with higher capacity than the parent Fe system while maintaining the high voltage. Hard X-ray Photoelectron Spectroscopy and ab initio molecular dynamics simulations indicate that Mn substitution activates P2S6 polyanionic redox involving interlayer S--S bond formation with no evidence of Fe or Mn cation migration, and increases capacity beyond the formal transition-metal redox limit. This demonstration of polyanionic redox in a thiophosphate material highlights the opportunity to explore alternative Li-rich thiophosphate structures as high-capacity lithium-ion cathodes.

Supplementary materials

Title
Description
Actions
Title
Accessing polyanionic redox in high voltage Li-rich thiophosphates
Description
Supporting Information for Accessing polyanionic redox in high voltage Li-rich thiophosphates
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.